Calcijex
Россия
  • Россия
  • Украина

Calcijex - Scientific Information

Manufacture: AbbVie
Country: Canada
Condition: Hypoparathyroidism, Hypocalcemia, Renal Osteodystrophy, Rickets
Class: Vitamins
Form: Liquid solution, Intravenous (IV)
Ingredients: calcitriol, anhydrous dibasic sodium phosphate, edentate disodium, monobasic sodium phosphate monohydrate, polysorbate 20, sodium ascorbate, sodium chloride.

Pharmaceutical information

Drug Substance

Proper name:calcitriol
Chemical name:(5Z,7E)-9,10-secocholesta-5,7,10(19)-triene-1α,3β,25-triol
Molecular formula and molecular mass:C27H44O3 416.64
Structural formula:


Physicochemical properties:Calcitriol is a white crystalline powder, slightly soluble in
methanol, ethanol, ethyl acetate and relatively insoluble in water.
The melting point is 111 to 115°C.

Clinical Trials

Study Demographics and Trial Design

Table 1. Summary of Patient Demographics for Clinical Trials in Management of Hypocalcemia in Patients Undergoing Chronic Renal Dialysis
Study #Trial DesignDosage, Route of Administration and DurationStudy Subjects (N=Number)Mean Age (Range)Gender
(%M/F)
Race
(%B/C)
CP5691Unblinded,
multi-dose,
three-period study
Initial dose:
0.25-1.0 mcg 3 times weekly post-dialysis
Dose increases:
weekly increments of 0.25 to 0.50 mcg
Maximum dose:
1.75-4.0 mcg 3 times weekly post-dialysis
No comparator: each patient served as his/her own control
Intravenous
Period 1: pre-treatment
(3 weeks)1
Period 2: treatment
(4-8 weeks)2
Period 3: post-treatment
(3 weeks)1
2048.3 years
(21-67)
Gender: 55/45
Race:
75/25

1: No vitamin D therapy.

2: CALCIJEX administered 3 times weekly, post-hemodialysis; 2 to 6 weeks of dose adjustment followed by 2 weeks at optimal dose.

Definitions: B/C = Black / Caucasion; M/F = Male / Female.

Study Results

The safety and efficacy of CALCIJEX (calcitriol injection) in the management of hypocalcemia in patients undergoing maintenance hemodialysis for chronic renal disease were investigated in Study 1. Twenty patients received calcitriol; doses were titrated for each patient based upon serum total calcium response.

The primary parameter for determining efficacy was serum total calcium. Serum levels of ionized calcium, phosphorus, magnesium, and alkaline phosphatase were also measured to determine the effect, if any, of calcitriol on these parameters. A significant increase (p < 0.001) in serum total calcium (CaT) of 1.7 ± 0.2 mcg/dL was observed during the last two weeks of treatment compared with the last week of the pre-treatment period, where CaT decreased by 1.2 ± 0.2 mcg/dL (p < 0.001). Mean serum C-terminal parathyroid hormone (PTH) levels decreased to 50% of pre-treatment values during Period 2 and returned to pre-treatment levels by the end of Period 3.

Detailed Pharmacology

In human studies, calcitriol is rapidly absorbed from the intestine. Vitamin D metabolites are known to be transported in blood, bound to a specific alpha2 globulin.

A vitamin D-resistant state may exist in uremic patients because of the failure of the kidney to adequately convert precursors to the active compound, calcitriol.

Recent reports have indicated that vitamin D analogues may cause a deterioration of renal function in chronic renal failure patients who are not on renal dialysis.

Calcitriol administered intravenously or intraperitonealy was found to be a simple and effective means to suppress secondary hyperparathyroidism in patients undergoing hemodialysis or ambulatory peritoneal dialysis.

Toxicology

Acute Toxicity

The acute toxicity of calcitriol administered by a variety of routes was studied in mice and rats. The lethal dosages are shown in Table 2.

Table 2. Acute Toxicity of CALCIJEX® in Mice and Rats Median Lethal Dosages
Species Route LD50 mcg/kg
Mice intraperitoneal
oral
subcutaneous
1900
1350
145
Rat subcutaneous 66

Definition: LD50 = Lethal dose that killed 50% of the animals.

The primary signs of toxicity included decreased lacrimation, ataxia, body temperature decrease and somnolence.

Subacute Toxicity

Rat

Neonatal rats (15/sex/dose) were administered calcitriol once daily for 14 to 16 days at oral doses of 0, 0.06, 0.19 and 0.64 mcg/kg/day. Five controls, four low-dose, two mid-dose, and fifteen high-dose pups died during the two-week treatment period. Some of the deaths were attributed to dosing accidents, but more than half of the deaths in the high-dose group were drug-related. An additional 6 high-dose pups died during a 7-week "recovery" period. Drug-related deaths resulted from metastatic calcification alone or in combination with the stress imposed by weaning.

Many high-dose pups were considerably smaller than pups in the other groups, exhibited subcutaneous white patches on head and lower jaw and developed splayed limbs, and had higher serum calcium levels than controls. Gross and histologic changes reflective of metastatic calcification were seen in a number of organs including kidney and heart. Nephrocalcinosis was the most consistent histologic lesion noted.

No significant signs of toxicity were noted in low-dose pups examined soon after final treatment, but 3 of 8 low-dose animals examined after the 7-week "recovery" period exhibited a minimal degree of renal calcification. The observed effects, were deemed to be entirely attributable to the induction of hypercalcemia in previously normocalcemic animals.

Neonatal rats (15/sex/dose) were treated intramuscularly once daily for 14 to 16 consecutive days with calcitriol at doses of 0, 0.13, 0.38 and 1.28 mcg/kg/day. The majority of the animals were killed following the last treatment, but a number of pups were maintained on a 7-week "recovery" period.

One control, one mid-dose and two high-dose pups died during the two-week treatment period; six additional mid-dose and seven additional high-dose pups died during the "recovery" period. Drug-related deaths resulted from metastatic calcification or renal tubular necrosis.

Subcutaneous white patches on the head and splayed limbs were observed at the high-dose, 1.28 mcg/kg/day. Mean body weights of males in all groups were significantly less than the control mean. Serum calcium levels were elevated in all animals receiving calcitriol.

Gross pathologic changes included white streaks of spots on the liver, heart and diaphragm. Metastatic calcification was the principal treatment-related histologic lesion found in all treatment groups. Nephrocalcinosis, gastric mineralization and calcium deposition in heart, aorta and respiratory system were consistently seen. Residual calcium deposits tended to be less severe in the tissues of the recovery animals.

Rats (10/sex/dose) were injected intramuscularly with calcitriol at dosage levels of 0, 0.03, 0.13 and 0.64 mcg/kg/day for 14 days. Dosage groups consisted of 10 males and 10 females. There were six deaths at 0.64 mcg/kg/day during the study. Apparent signs of toxicity observed at 0.13 and 0.64 mcg/kg/day included labored breathing, reduced motor activity, corneal opacities, decreased defecation and elevated serum calcium levels.

Elevation in blood urea nitrogen (BUN) and decreases in total serum protein and potassium, body weight and food consumption were noted at 0.64 mcg/kg/day. Microscopic lesions found included calcification of the myocardial fibers, arteriosclerosis of the coronary and aortic arteries, nephrolithiasis, calcification of the stomach and the large intestine and thymus hypoplasia. The only histopathological change observed at 0.03 and 0.13 mcg/kg/day was an increase in phagocytosis by the large cortical cells of the thymus. The thymus hypoplasia was considered to be attributable to a high degree of stress consequent upon debilitation and possibly severe electrolyte changes. Corneal opacities observed were not considered by the authors to be drug-related. The maximum tolerated dosage was 0.03 mcg/kg/day in this study.

Immature rats (10/sex/dose) were administered calcitriol once daily for a minimum of six weeks beginning on postnatal Day 15. At doses of 0, 0.02, 0.06 and 0.20 mcg/kg/day, no evidence of toxicity attributable to calcitriol administration was noted. The "no-effect" level was determined to be 0.20 mcg/kg/day in these animals.

Dog

Dogs (3/sex/dose) were injected intramuscularly with calcitriol at dosage levels of 0, 0.02, 0.06 and 0.21 mcg/kg/day for 14 days. There were no deaths in the study. Thinness, dehydration, decreased activity, ocular discharge, decreased body weight and food consumption were observed at 0.06 and 0.21 mcg/kg/day. Significantly elevated serum calcium levels were noted at the two higher dosage levels (0.06 and 0.21 mcg/kg/day). Calcium deposition was not evident in the tissues at any dosage level. Therefore, a dosage of 0.02 mcg/kg/day was considered to be the maximum-tolerated dose in this study.

Mutagenicity and Carcinogenicity

There was no evidence of mutagenicity as studied by the Ames Method. Concentrations as high as 1000 mcg were found to be non mutagenic to Salmonella strain.

Long-term studies in animals have not been performed to evaluate the carcinogenic potential of calcitriol.

Reproduction and Teratology

Fertility and General Reproductive Performance

Calcitriol was administered orally to male rats for 60 days prior to mating and to female rats (24/dosage) from 14 days prior to mating until sacrifice of the females either on gestation Day 13 or on lactation day 21. Dosages tested were 0, 0.002, 0.08 and 0.30 mcg/kg/day. No adverse effects on either fertility or neonatal development were noted. All F0 generation animals survived. It was concluded that under the conditions of this study there were no adverse effects observed on either reproductive parameters or the pups themselves at dosages as great as 0.30 mcg/kg/day of calcitriol.

Teratology

Calcitriol was orally administered to pregnant rats (20/dosage) from gestation Day 7 to gestation Day 15. Dosages tested were 0 (control), 0.02, 0.08 and 0.30 mcg/kg/day. Numbers of fetuses, implantation sites and resorption sites were counted. Fetuses were weighed and examined for external abnormalities. One-third of the fetuses in each litter were examined for visceral abnormalities, two-thirds of the fetuses in each litter were prepared for skeletal evaluation.

Maternal weight gain was significantly reduced in dams receiving 0.3 mcg/kg/day. No biologically significant adverse effects on rat embryonic or fetal development were observed at any of the tested dosages. There was no evidence that calcitriol was teratogenic in rats.

Calcitriol was orally administered to pregnant rabbits from gestation Day 7 to gestation Day 18. Dosages tested were 0, 0.02, 0.08 and 0.30 mcg/kg/day for 31, 16, 15 and 16 rabbits respectively. Numbers of live or dead pups, resorption sites, corpora lutea and implantation sites were recorded. Fetuses were examined for external abnormalities, dissected to check for visceral abnormalities and prepared for skeletal evaluation.

Marked weight loss occurred among high-dose dams; 3 high-dose animals died (2 clearly as a result of hypervitaminosis D). The mean litter size was reduced and the resorption frequency was increased among high-dose dams. Although not statistically significant, these changes were considered to be biologically significant by the authors. The percentage of viable pups that survived 24 hours of incubation was significantly decreased at the highest dose. The average fetal body weight was slightly reduced at this dosage as well. While the overall incidence of external, visceral and skeletal anomalies was comparable among all groups, one entire litter in each of the 0.08 and 0.30 mcg/kg groups exhibited multiple external malformations. These malformations included open eyelids, microphthalmia, cleft palate, reduced long bones, gnarled paws, pes caves, shortened ribs and sternebral defects in 9 mid-dose fetuses and open eyelids, reduced long bones and shortened ribs in 6 high-dose fetuses. The authors concluded that while the low incidence of litters involved, the lack of clear dose-response and the lack of statistical significance made it uncertain that these abnormalities were related to calcitriol administration, this possibility could not be discounted.

Perinatal and Postnatal Studies

Calcitriol was orally administered to pregnant rats (20/dosage) from gestation Day 15 through Day 21 of lactation. Dosages tested were 0, 0.02, 0.08 and 0.30 mcg/kg/day. Hypercalcemia and hypophosphatemia were noted in dams receiving 0.08 and 0.30 mcg/kg/day. Serum sampled from pups on postnatal Day 21 was hypercalcemic in both the mid- and high-dose groups. Aside from this no adverse effects on reproduction or pup growth and survival were observed at the tested dosages.

Special Studies

Vein-irritation Study

Calcitriol was given intravenously into an ear vein in rabbits at doses of 5 mcg/kg which is ten times the proposed maximum dosage. Calcitriol was found not to be irritating to veins.